опрос

Будет ли Вам интересно помогать в развитии этого сайта на безвозмездной основе?

(1558 votes)

Please wait...

Авторизация
счетчики

Яндекс цитирования
наши гости

PostHeaderIcon Сверхмассивные звёзды

Сверхмассивные звёзды

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невыгодно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также стоит под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами, образуют нейтроны. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звезды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.

В настоящий момент существуют только косвенные наблюдения. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звезд, используя теорему вириала. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что акреция не останавливается твердой поверхностью звезды, а просто уходит в области очень высокого красного смещения, где согласно с современными представлениями (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

Источник: Википедия

Комментарии (0)
Только зарегистрированные пользователи могут оставлять комментарии!
 
Виды космоса
Юпитер больше Земли
Юпитер больше Земли
планета Сатурн фото
планета Сатурн фото
луна совершенно секретно фото
луна совершенно секретно фото